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Abstract

A novel design of a state estimator is presented using
second-order dynamic equations of mechanical sysiems. The
eigenvalues and eigenvectors of the state estimator are as-
signed by solving the second-order eigenvalue problém “of
the structural system. Three design methods for the state
estimator are given in this paper. The first design method
uses collocated sensors to measure the desired signals and
their derivatives. The second design method uses prefilters
to shift signa! phases to obtain estimates of the signal deriva-
tives. These two methods are used to build a second-order
state estimator model. The third design method is the con-
ventional one which converts a typical second-order dynamic
model to a first-order model, and then builds a state estimator
based on the first-order model. It is shown that all the three
designs for state estimation are similar. A numerical example
representing a large space structure is given for illustration
of the design methods presented in this paper.

Introduction

Structural dynamic systems are generally described by
second-order differential equations with symmetric and
sparse structural matrices. Structural engineers and analysts
perform dynamic analyses by taking full advantage of the

symmetry and sparsity of the structural matrices to minimize -

the computational burden and keep physical insight intact.
For example, it is obviously easier to solve the eigenvalues
of a symmetric and sparse matrix than a general matrix. On
the other hand, control theory including estimation theory
are established using first-order dynamic equations. Exist-
ing control software tools today are thus written in first-
order forms. In applications to structural dynamic systems,
a composite state vector is used to transform the second-
order dynamic equations to a larger dimensional first-order
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form. Transformation to the first-order form not only in-
creases the dimension by a factor of two but also destroys
the symmetry of the structural matrices. As a result, signif-
icant model reduction is generally required before any con-
toller or_state estimator design can be.accomplished, be-
cause of the numerical difficulty associated with the solution
of high dimensional equations such as Riccati equations. A
number of researchers!—% have investigated model reduc-
tion to circumvent the dimension problem. An alternative
approach to model reduction is to preserve the second-order
dynamic equations in designing the controller or state esti-
mator. Recently, several researchersé~20 have addressed the
computational advantages of designing controliers and state
estimators directly using the second-order structural models.

The state estimator plays a major role in controller de-
signs using state feedback under the constraint that the num-
ber of sensors is less than the number of states. Second-order
state estimator models have just recently received attention in
the literature. An optimal state estimator known as Kalman
Filter has been used in Ref. 6 for discretized second-order
structural models. Robust computational procedures for solv-
ing Kalman Filter estimation error covariance matrices have
been developed for second-order models in Ref. 7. A dissi-
pative state estimator in second-order form was introduced in
Ref, 8. This state estimator was analogous to a dissipative
controller® with collocated sensors and actuators whereby
positive definite feedback gains were designed 10 insure sta-
bility. The computational advantages of second-order state
estimator models are discussed in Refs. 10 and 11.

The objective of this paper is to develop a robust state
estimator for use with robust controllers. This research was
stimulated by the work in Refs. 10 and 11 where sub-optimal
second-order observers were developed using optimal control
theory. The approach of this paper is to extend the technique
presented in Ref. 12 for robust eigensystem assignment of
second-order controllers. As in Ref. 12, the technique takes
advantage of a second-order form of the system equations
(instead of transforming to a first-order form) which results
in considerable computational efficiency. The technique can
handle any forms of feedbacks, i.e., displacement, velocity,
and acceleration. It is known that the controller and state
estimator in the first-order form are dual in a mathematical
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sense, which implies that the design freedoms are identical.
The question arises whether the same staternent is true for the
second-order form. It will be shown that the design freedoms
for the second-order state estimators are only half of those
for second-order controllers (see Ref. 12). Therefore, this
paper presents methods of obtaining the additional freedoms
which are needed to complete the design process.

In this paper, three methods for the design of state estima-
tors having second-order models are presented using eigen-
system assignment techniques. The first design method uses
collocated sensors to measure signals and their correspond-
ing derivatives to gain full freedom to build a second-order
state estimator model. The technique used in this design
assigns the eigenvalues such that the resulting closed-loop
system is robust with respect to system parameter uncer-
tainties, This is accomplished by requiring the closed-loop

eigenvectors to be as close as possible to the column-space of -

a well-conditioned matrix. The second design method uses
a second-order prefilter design in place of collocated mea-
surements of the signals and their derivatives as required in
the first design method. Here, the prefilter is designed to
shift the phase of the signals, thus replicating the effects of
the signal derivatives in the first design. The third design
method is the traditional state estimator design in which the
estimator is constructed based on a first-order model of the
system. However, the gain matrix is computed through a
second-order model. It is demonstrated that a second-order
state estimator together with a prefilter design has the same
design freedoms as the conventional first-order state esti-
mator. A numerical example is given to demonstrate the
proposed method.

State Estimators with Measurement Signals
and their Derivatives

In vibration control of flexible structures, two set of
second-order linear, constant coefficient, ordinary differential

equations are frequently used. These equations, in. matrix ..

form, are
Mi+ Di+ Kz = Bu 1)

y=Hyz + Hyz. )

Equation (1) is the system dynamic equation having z as the
state vector of dimension n, and M, D, and K as the mass,
damping and stiffness matrices, respectively, which generally
are symmetric and sparse. The n X p influence matrix B
describes the control force distribution for the p X 1 control
force vector u. Equation (2) is the measurement equation
having y as the measurement vector of length m, Hy the
m X n velocity influence matrix and Hy the m X n deflection
influence matrix.

If the measurement vector y in Eq. (2) is used directly for
a feedback control design, an output feedback controller is
obtained. The output feedback control is generally attractive
because it is simple and easy for real time implementation.
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However, a stable and robust output feedback controller
may require either too many measurements which are not
practical, or some measurement devices which are not yet
available and need to be developed. On the other hand,
the state feedback control law assumes that all states are
measurable. In many practical control designs for flexible
structures, it is physically or economically impractical to
install the sensors that would be necessary to measure all the
states. For such cases, a state estimator is needed to estimate
the states from the measurement outputs, and provide enough
freedom for a stable and robust feedback controller design.

The basic approach of estimating the states is to simulate
the state and output measurement equations of the system
on a computer with an assumed initial state vector. In other
words, Egs. (1) and (2) are simulated on a computer with
the same input u as applied to the actual physical system.
For- noise-free ‘and uncertainty-free cases, the states of the
simulaled system, i.e. the estimated states, will then be
identical to the states of the actual systems if initial states
are the same. However, the actual system may be subjected
to unmeasurable disturbances which can not be used in the
simulation but affect the output measurements. In order to
make sure that the estimated state does not deviate too much
from the actual state values, the difference between the actual
output and the estimated output should be used as one of the
driving inputs in the estimation equation.

Let the state estimation and the output equations be

Mé+D:i+K£=Bu+Ld(y—ﬂ)+Lo(ﬂ—f7) &)

§=H2+ Hy2 @
where Z is the estimated state vector of length n, § the
estimated output of length m, and Ly and L, the n X m state
estimator gain matrices. Here, in contrast to the conventional
approach, an additional term, Ly (§/—7%), is added to Eq. (3) to
penalize the difference between the actual output derivative
and estimated output derivative. Why the additional term
is added in Eq. (3) will be explained in detail later. Note
that it is not wise to differentiate measurement signals to
generate this additional term for real time implementation.
Additional sensors are recommended for use in measuring
the derivatives of measurement signals. :

To determine the matrices L, and Ly , define the esti-
mation error as
e=z—%. s)
Subtracting Eq. (3) from Eq. (1) and employing the relation-
ship given in Egs. (2) and (4), the error equation becomes

[M+ L H,)é+ D+ L,Hg+ LyH,Jé+ [K+ LgHgle= 0.

©)

A question arises as to if an appropriate choice of the gain

matrices L, and Ly will move the eigenvalues of Eq. (6)

10 the left-hand plane so that the steady-state value of e(t)

for any initial condition is zero, i.e. ‘lim e(t) = 0. The
—00



following paragraphs present a novel way of synthesizing
the matrices L, and Lg.

Assume that the sys‘tem. Eqgs. (1) and (2), is observable.
The left eigenvectors ¢ and eigenvalues Ay for the system
in Eq. (6) are related by the equation

3T {IM+ LoBu} + [D+ LuHg+ LaHole + [K + LaH )} =0

k=1,...,n. ¢))

The subscript k refers to the mode number. Rearranging
Eq. (7) in a compact matrix form yields

(EM + /\kD+K)] e

(% % lo + La)) [ (MHo + Hy)

k=1,..,n

@®
The transpose of this equation gives

bk
2 T+8T ¥)
(MM + 2D+ K) (MHy +Hy)] [(AkL?,"+LdT)¢k]

=T =0; k=1,..,n €)]

If the closed-loop eigenvalues A; (k = 1,...,n) and their
complex conjugates are assigned, Eq. (9) can be used to
determine the gain matrices L, and L4. Because the vector
¢, is in the null space of the matrix T, it is necessary t0
compute the null spaces of the matrices Ty (k= 1,... ,n)
corresponding to the desired eigenvalues Ay (k = 1,...,7).
To obtain the nontrivial solution space of the homogeneous
equation (9), the singular value decomposition (SVD) is
applied to the matrix I'; yielding

. Ok 0 Wk
Te= UtV = U Sl Q0)
0 0 ok
Because ) in T} is a complex value, all the quantities are
complex except the diagonal matrix o; which contains the
nonzero and positive singular values. Here the superscript

means transpose and complex conjugate. It follows that -

the matrix V), represents a set of orthogonal basis vectors
spanning the null space of the matrix Ty so that

Trde = TiVorck =0 (n)
where c; is an arbitrary column vector with an appropriate
length. Note that if T is well-conditioned (i.e. not close to a
matrix of lesser rank which is easily found from the singular
values; hence the advantage of using SVD), the above basis
for null space V,, can be computed more efficiently by taking
the QR decomposition of T';. If the matrix (A3 M+, D+ K)
is invertible, the vector (§; @}]*, where ¢ is an arbitrary

vector of length pand @y = —[M M+ X D+ K] [\ HT +
HT)¢y. is in the null space of the matrix T.

To obtain an expression for gain matrices L, and Ly,
choose a particular set of vectors, ¢p = Vorcr (K =
1,...,n) satisfying Eq. (9), corresponding to some choice
¢, and partition the vector ¢ into two components such
that

= 31: — Vok —
I‘k¢k_r,, &k _I‘k[%k]q_o. (12)
Comparison of Eqs. (9) and (12) yields

IToA+ LJ0=¢ (13)

where the 7 X 7 matrix 3 = [y, Bq,..., P, the m X 1
matrix & = [¢1,42,...,6n) and the n X n matrix A =
diag[A1, Az, .- ,Mn). To solve for the gain matrices Ly and
L4 (Both.matrices.are real), decompose Eq. (13) into real
and imaginary parts to yield

IT@,Ar — FiA) + L3T, = & (143)
LT@ A + BiAc) + LT % = & (14b)

or in matrix form
T% _(JT [T (31Ai_'_*'6iAr) (ErAr__—E.'Ae)
L'y =L Ld][ 3; 3,
@15)
Here, the subscripts 7 and ¢ respectively refer to the real
and imaginary parts of the associated quantities. The gain
matrices L, and L4 can be obtained from Eq. (15)

IF=(IT IT)=%9""

lé ] [((I),A,- +®iAr) @A - @;A.-)]"
- 1 r Q.‘ q)r .
(16)
A matrix inversion is required in the computation of the
gain matrices L, and L. However, if the number of eigen-
values to be assigned is less than the number assignable, 7,
Eq. (11) becomes underdetermined which leads naturally to
a minimum gain solution. To assure that the above matrix
is well-conditioned for inversion, the condition number of
the matrix ¥ should be the smallest possible. Interestingly,
the above numerical requirement for the well-conditioning
of the matrix inversion problem corresponds exactly to the
eigenvalue conditioning problem since ¥ consists of eigen-
values and eigenvectors. For sufficiently small damping
D and small real part of the closed eigenvalue A,, $; in
Eq. (15) approaches zero, because all the null spaces cor-
responding to Ty (k = 1,...,n) are nearly in the real do-
main. The matrix ¥ in Eq. (15) can be approximated by
T = diag[®,A; ] In structural dynamics terminology,
it indicates that for small damping and small real part of the
eigenvalues assigned for the closed-loop model, the real part
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of the closed-loop eigenvector matrix &, dominates the con-
ditioning of the matrix ¥. The closed-loop eigenvectors are
chosen and discussed in the following section.

Eigenvector Assignment for Robustness

Define an n X n well-conditioned matrix Hp, with vectors
ho1,hoz,. .. hon as its columns. Then, the closed-loop
eigenvectors are chosen to be as close as possible to the
range space of the columns of matrix Hy to achieve a robust
closed-loop design. If the open-loop conditioning is good to
begin with, then the columns of matrix Ho may be chosen
to correspond to the open-loop eigenvectors, i.e.,

hOk = ¢ok )

In general, the choice of the open-loop eigenvector 1,y is

k=1,2,...,n an

arbitrary as long as the resulting closed-loop..cigenvectors ...

are linearly independent. If the control system is used
only to provide active damping, and the closed-loop damped
frequencies are quite close to their open-loop values, then
it is best to use the open-loop eigenvector corresponding to
an eigenvalue with the same (or similar) frequency for the
vector 1,; in Eq. (17).

Alternatively, the matrix Hy may be chosen to be an
arbitrary unitary matrix (with perfect conditioning), or the
closest unitary matrix to the open-loop eigenvectors. In
the latter case, the matrix Hy is then the solution of the
constrained least square problem minimizing

|‘I'o - HOI
subject to HgHo =1

which leads to
Hy=UW" (18)

where U and W are, respectively, the left and right singular
vectors of the open-loop eigenvector matrix W,, and 7 is

an n X n identity matrix. It is noted that by choosing the

closed-loop eigenvectors to be as close as possible to the
column space of matrix Hp the closed-loop conditioning
of the second-order system represented by Eq. (9) will be
enhanced. However, an additional requirement is needed to
ensure the well-conditioning of the actual system of Eq. (6);
and that is to require that the estimator gains be as small as
possible.

Having defined Hp, the closed-loop eigenvectors ¢,
P = Vaa., k = 1,2,...,n, and the comresponding
coefficient vectors ¢, are computed through the following
sequential three steps.

Step (1): Obtain the vector in the attainable closed-loop
eigenvector space, Vo1 (see Eq. (12)), corresponding to the
first closed-loop eigenvalue, which is as close as possible

10 the range space of the columns of matrix Qo = ]val;
where Np is a p X o null matrix. The vector can be obiai
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from the algorithm described by Golub and Van Loan!® for
the computation of principal angles and vectors of a subspace
pair. Expand both matrices V,; and Qg in terms of their QR
decomposition, i.e.,

Vo= QV.,,RV,; ; Qo= QQORQO‘ (19)

Here Q;,— and Qq,, are orthonormal matrices of dimensions

(n+p) Xp and (n+ p) X n, respectively, and Rv and Rg,
are p X pand n X n upper triangular matrices, rcspecuvely
Project the vectors Qy,, unto Qg to obtain

H = Q‘Vol QQU ¢

The singular values of matrix H are cosines of the principal

angles of the subspace pair {R(Qy_ ), R(Qq,)}.!* Where
R( ) denotes the range space of ( ). Taking the singular

20)

value decomposition of H, gives
H=YSZ* 1)

in which Y and Z are unitary matrices, and the matrix S
contains the singular values of H, i.e.,

rey ... ... 01 cosb) 0 7
) cosbs
S= op = COlap
0 ... ... © 0 0
(22)

Note that the singular values oy,. .., 0, are all positive and
less than or equal to 1 because the matrix H is formed by
orthonormal matrices as shown in Eq. (20). The angles
6,...,0; are.the principal angles -of the subspace pair.
Having in mind that 1 > 0y > 03 > ... > 0p, the vector ¢
in the orthonormal columns of Qp- wlnch is closest to the
column space of Qg, is then

v 31 = Q‘V“y=V01R%:ly

in which y represents the first column of matrix Y. Choosing
the first closed-loop eigenvector 1o be @;, the coefficients ¢;
of Eq. (12) become

23)

a=R;ly. (24)

Note that RV defined in Eq. (19) is a nonsingular matrix.
Step (2): Reduce the column space of matrix (g by the
vector @, in order to ensure the linear independence of the

closed-loop eigenvectors. If @, is not in the column space
of (o, then reduce the column space by the closest vector



in the space to the vector ¢,. The new subspace is spanned
by the columns of matrix Q; defined as

Q1 = [Qo — Qg,22" Qg Qo]

where z is the first column of matrix Z. Note that the
columns of matrix ¢}, are orthogonal to the vector Qg 2, i.e.,
z* anQl = 0. Equation (25) may not be computationally
efficient. It is shown here just for simplicity and clarity, and
other computational procedures to compute Q3 may be used
instead.

Step (3): Repeat steps (1) and (2) for the remaining n—1
eigenvalues. For the #*h eigenvalue the column space of
matrix ;1 is reduced by the vector QJg,_, z resulting in a
new matrix ¢J;,

Qi = [Qi-1 - Qq,_,22°Qg,_, Qi-1]-

In summary, following the developments outlined in steps
(1)-(3), the closed-loop eigenvectors are chosen to be as close
as possible to the column space of a well-conditioned matrix
Hp and the estimator gain matrix elements are designed to be
as small as possible, thereby resulting in a robust closed-loop
design.

(25)

Note that the above formulations are nearly identical to
the eigensystem assignment with full state feedback!? except
for slight differences in the matrix I'y defined in Eq. (9),
ie the matrix B in the case of full state feedback is
replaced by matrix [\ HT + H7] for the state estimator.
Computationally, both state feedback and state estimator
designs are identical.

Let us come back to discuss the term L, (g — §) which
was added in Eq. (3) to gain more freedoms and make the
estimator problem dual to the state feedback problem. Exam-
ination of Eq. (13) reveals that when LT = 0, LT = 3~
which is, in general, a complex matrix. It thus contradicts
the requirement that the gain matrix LT must be real. Note

that 3! is function of the closed-loop eigenvalues of the
state estimator. Consequently, it is immediately concluded
that, with the absence of LT, the solution of the gain matrix
L in real domain, in general, does not exist. However, there
may exist certain eigenvalues for the state estimator such that
T ~! is real. For example, given a set of desired estimator
eigenvalues, the gain matrices, Ly and L4 , are computed
from Eq. (16). Using the approach shown in Ref. 10, L,
is omitted from Eq. (6), and the eigenvalues of the system
in Eq. (6) may be still in the lefi-half plane. However, the
eigenvalues thus obtained are, in general, different from the
desired ones which are originally used to compute the ma-
trices L, and L;. However, if the eigenvalues satisfy the
performance requirements, it can be used for real time im-
plementation. To this end, it is concluded that, using the
second-order dynamic mode! for design of state estimators,

(26)

requires an additional expense in the sense that collocated
sensors may be needed for measuring the signals and their
derivatves.

State Estimators with Measurement Signals
and Prefilters

In some cases, collocated sensors for measuring signals
and their derivatives are not available. An alternate way
is needed to gain the freedom for designing the state esti-
mators using second-order dynamic models. The purpose
of adding sensors, as discussed previously, is to measure
signal derivatives 1o obtain signals with different phases so
as to gain enough freedom for the state estimator design.
There are many other ways to shift signal phases without
additional sensors. An alternative is the use of prefilter to
approximately estimate the signal derivatives.

Let-the state estimation and tie output equations be
Mi 4 Di+ Ki=Bu+ La(y—-9) + Lo(z—2) (27)

54+ Pz+Qz=y (i.e. Hyt+ Hyz) (28)

and
34+ P34+ Qs=17 (ie. Hyt+ Hyt) (29)
where the vector z of length m contains the filiered signals,
% the estimated output vector of length m, and L, the n X m
gain matrix associated with the error between z and 2. Here,
the additional term, L, (2—2) provides the freedom necessary
to design the state estimators for second-order models. The
phase differences between the measured signals y and the
shifted signals z are determined by the mxm square matrices
P and Q. For simplicity in real time implementation, the
matrices P and Q may be chosen to be diagonal such that
signals are not coupled in the prefiltering processes. Indeed,
in this case, a scalar second-order equation is obtained for
each signal which can be easily implemented by an analog
computer. Subtracting Eq. (27) from Eq. (1) with the aid of
Egs. (28) and (29) yields the error equation ’
Mé- [D+ LgH,)é+ [K + LaHgle+ Loes =0 (30)

and
é;+ Péy +Qes — Hyé— Hzge=0 <))}

where ¢, = 2z — £ is the error between the filtered-signals
and the estimated filtered-signals. Equations (30) and (31)
can be rewritten in the following matrix form

() ()

[ 60

The left eigenvectors (@y #T) (k=1,...,n+ m) and the
corresponding eigenvalues ;. for the system of Eq. (32) are

(32)
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related through the following equation

@ m{[s e[t E"
i 3]

where subscript k refers to the eigenvalue number. The
transpose of this equation is
- HZ‘

M 07, D+ HTLY
0 Ik 0 PT

+[K+H?L3. ‘Hf]} 3&]1_0.

0

P] M
(33)

=0

Ak

(34)
Ly QT
This equation ¢an be decomposed into two parts which are

{MM+NID+ B[ L)+ 1K + BI5)} 3

(358)
AT + H ) =0

and

T+ B+ MPT+ QT = 0. (35b)

Solving for ¢ from Eq. (35b) and substituting it into
Eq. (35a) yields

[(BM+ XD+ KT) (M HT + H]))

N = Tydy =0

I+ PR+ MPTH QTN [ T T
(36)
This equation is nearly identical to Eq. (9) in the sense
that T';’s in both equations are identical, and therefore
have the same null space. This simply means that the
computational procedure developed previously can also be
used in computing the gain matrices L, and L4. However,
the way to compute L, and L4 in Eq. (36) is somewhat

different from that of Eq. (9).

If the closed-loop eigenvalues Ay (k= 1,...,n+ m)
and their complex conjugates are assigned, the gain matrices
can be determined as follows. As shown in Eq. (12), choose
a particular set of vectors ¢, (k = 1,...,n + m) satisfying
Eq. (36) and partition vector ¢, into two components, then
Eq. (36) implies

{LE+DE+ NPT+ QN Y= 5 5
k=1,...,n+m.

This equation can be decomposed into real part and imagi-

nary parts to solve for the gain matrices L, and Lg (Both

matrices are real), containing 2m X n unknown elements.

However, the computational procedure is not as straightfor-

ward as the previous case, Eq. (13). Because P and () are
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design parameters for the prefilter equations, they may be
chosen to be diagonal for simplicity in real time implemen-
tation as well as computation of L, and L, in Eq. (37).

First-Order State Estimator Models

There are two reasons why first-order state estimators for
flexible structures are presented in this section. First, a com-
putational procedure which is different from conventional
ones is developed here. Second, a comparison between the
first-order and the second-order state estimators is given for
better understanding of the characteristics and merits of both
approaches.

Equation (1) can be rewritten in a first-order form,

[ 316)- [ G- [a)

Correspondingly, the state estimation equation becomes

o G5 B G)+ )
+[n] e m(G25)

Note that the gain matrices L, and L; used here are
somewhat different from those shown in the above section
(Eq. (3)), even though they look similar. To determine the
matrices L, and L, the state estimation error is defined by

el =[(z-2)7T (z-2)T)7. (40)
Observe that the estimation error defined in Eq. (5) for a
second-order mode! is different from the one defined above,
Eq. (40). There is no estimation error for velocity terms
involved .in Eq. (5). Instead, the estimated. velocity errors
are incorporated in the state estimation equation, Eq. (3).
Subtracting Eq. (39) from Eq. (38) yields the error equation

[]:)4 2]é+[10( g]w[g][ﬂd H.,]e=o. 41)

The left eigenvectors {¢f, ¢1,;} (k = 1,...,2n) and
the comesponding eigenvalues i,, for the system given by
Eq. (41) are written as

L4, d{‘]{[g " '\"+[’0‘ _,f] “2)
+[ 5] 15 m1}=0

where subscript k refers to the eigenvalue number. The



transpose of this equation is
I 0 A\ 6 K
{[o s[5 5]
Hy Bes
+[”’] 2 @)oo

This equation can be decomposed into two parts which are

43)

Akbkv+ Kora+ H] [LToru+ LIoka) =0 (442)

and

MeMid — 6y + Déga+ HY [LT¢ky+LT0xd) = 0. (44b)

Premultiplying Eq. (44b) by A; and adding the resulting.

equation to Eq. (44a) yields

[PEM+ 2D + K ¢ra+ [\eBT + H]) L6k + LIsra) =0
(45)
or in a compact matrix form

[(AM + XD+ K) (AT + HY))
Prd (46)

' [(LM,, + Lzm)] =Tude =0
This equation is nearly identical to Eq. (9) in the sense that
I';’s in both equations are identical, and therefore have the
same null space. This is a significant result which simply
indicates that the computational procedure developed above
for the second-order model can also be used in computing
the gain matrices L, and L4 for the first-order model. The
matrices L, and L; can be determined when all the null
spaces of the matrix I'; corresponding to the eigenvalues A,
are computed. However, the way to compute L, and Lg in
Eq. (46) is somewhat different from those in Eq. (9).

If the closed-loop eigenvalues Ay (k = 1,...,n) are as-
signed including their complex conjugates, the gain matrices
L, and L can be determined as follows. Following Eq. (12),
choose a particular set of vectors ¢ (k=1,...,n) satisfy-
ing Eq. (46) and partition the vector ¢ into two components,

of = [¢>{d &{]. Equation (46) implies

o+ ira=d ; k=1,...,n (@D
where ¢, can be solved from Eq. (44)
by = —(Kdea+ Hi D)/ 5 k=1,...,n  (48)

Both Eqgs. (47) and (48) are n X n equations compared to a
2n X 2n equations solved for a typical first-order model such
as Eq. (43). In other words, there are 2n X n less equations o
solve for the matrices L, and Ly for each eigenvalue using

Eqs.(47) and (48). Therefore, & total of 2n X nXn equations
are :_:_omputationally saved for n assigned eigenvalues. Now
let T = [f14,-..,0na) & = [f10,--s¢ne] and T =
[61,. ..+ &n). Equation (47) gives

173, + 178, = &, (492)
IT, + 1T = &; (49b)
or in mawix form
& & . .
T T Y L .
[L8 Lg] [75.- 75,] =[® %) (50)

where the subscript r and i respectively refer to the real
and imaginary parts of the associated quantities. The gain
matrices L, and Ly can then be solved by using

(ZT If)=[& &) &7 @
v ' ® O |

Again, 2 matrix inversion is required in the computation of
the gain matrices L, and L.

Numerical Example

The second-order state estimator is used to control the
vibrational motion of the flexible truss structure shown in
Fig. 1. The structure generically represents a test article for
the NASA's Controls-Structures-Interaction program. It is
composed of a L-shaped bus, a reflector, a laser feed, and
two suspension cables used to simulate on-orbit conditions.
The original finite element model is composed of 350 grid
points with six degrees of freedom per grid point, resulting

in a 2100 degree-of-freedom. However, for preliminary

control designs a reduced order model comprised of the
first nine modes of the structure, covering a bandwidth of
0-5H z, is used. These modes include four pendulum modes
(modes due to suspension effects) and five flexural as well
as torsional modes. The actuation of the control forces is
provided through six proportional gas thrusters located at
various points on the body as illustrated in Figure 1. Six
inertial measurement units and six accelerometers provide
twelve measurements of linear velocity and accelerations
at six locations along the body (almost collocated with the
actuators) as indicated in Fig. 2.

The open-loop eigenvalues and the desired closed-loop
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eigenvalues are summarized in Table 1.

Table 1.

Open-Loop Closed-Loop

Eigenvalues Eigenvalues
0.0000 + 0.7746¢ | —0.0501 + 1.00002
0.0000 + 0.8019: | —0.0601 + 1.20007
0.0000 + 0.8043: {—0.0751 + 1.5000¢
0.0000 + 3.9237¢ | —0.1964 + 3.92374
0.0000 + 13.4800% {~0.6748 + 13.48001
0.0000 + 15.21941 |~0.7619 + 15.2194¢
0.0000 + 18.98331 |-0.9504 + 18.9833¢
0.0000 + 19.48611¢ |—0.9755 + 19.4861¢
0.0000 + 23.43451 |[-1.1732 + 23.4345:

The closed-loop eigenvalues are chosen such that the first

four pendulum modes are provided with 30% damping and .-

the remaining modes with 5% damping. The closed-loop
damped frequencies (imaginary part of the eigenvalues) are
larger than the open-loop values for the first three modes, but
the same for the remaining modes. The closed-loop eigen-
values are assigned via a constant full state feedback, using
the robust second-order assignment technique described in
Ref. 12 in conjunction with the first design method described
in the section of State Estimators with Measurement Signals
and their Derivatives. Here, however, the estimated state is
used instead of the actual state in the feedback loop.

Using the closest unitary matrix to the open-loop eigen-
vector matrix as the choice for matrix Hp, the eigensystem
assignment technique results in a well-conditioned closed-
loop system with a modal matrix condition number, ¢(¥), of
26.76 which compares quite well with open-loop condition
number of 23.43. The forbenius norm of the gain matrix
is quite small at 6.89. These results indicate that proposed
eigensystem assignment technique is quite effective and can
lead to viable closed-loop designs.

The estimator gains are also obtained using the eigen- -

system assignment technique described in the first design
method. The closed-loop eigenvalues of the estimator sys-
tem are chosen equal to the closed-loop eigenvalues of the
actual system given in Table 1 except that the real part of all

the eigenvalues are chosen at —0.5 to achieve an acceptable

performance for the overall system. The resulting state esti-
mator has a good conditioning of 67.06 and a low norm of the
gain matrix at 1.10 which further illustrates the effectiveness
of the proposed design procedure to obtain well-conditioned
closed-loop systems with small control effort.

To verify the feasibility of the designed state estimator,
a numerical simulation was carried out wherein the dynamic
behavior of the closed-loop system for an initial disturbance
is investigated. The time history for the first pendulum mode
and its associated estimation error are presented in Figs. 2(a)
and 2(b), respectively, for an intial velocity of 1.0 in all
coordinates. Similarly, the time histories for the first fiexible
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mode, and its corresponding estimation error are given in
Figs. 2(c) and 2(d). The time histories of the control forces
are respectively illustrated in Figs. 3(a)-3(f). The results
indicate that the initial disturbance is practically damped out
in 10 — 12 seconds,

Concluding Remarks

Three design methods for a state estimator were presented
in this paper. The first two methods were used to build a
second-order state estimator model. The third design method
was the traditional state estimator design using a first-order
model, but the gain matrix was computed through a second-
order model. Careful examination of the the third method
reveals that the first-order state estimation equation does in-
clude a filter equation. Indeed, when a second-order model
is convexted into a first-order model, an additional first-order
equation is generated which is then implicitely used to build
a filter equation. Consequently, it can be concluded that
as long as a prefilter design is added in the second-order
dynamic model, full freedom to design a state estimator is
obtained. From the computational point of view, the second-
order models are more attractive for use in designing the state
estimators, because the dimension of the mathematical mod-
els remain unchanged, rather than an increase by a factor of
two for the first-order models. Furthermore, the fundamental
structure of the mathematical models such as the symmetry
and sparsity of the mass, damping and stiffness matrices is
maintained. The disadvantages of the state estimation using
second-order models include the requirements of additional
sensors or prefilters for real time implementation.
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